{ "id": "1002.3856", "version": "v1", "published": "2010-02-20T07:56:38.000Z", "updated": "2010-02-20T07:56:38.000Z", "title": "Sharp bounds for harmonic numbers", "authors": [ "Feng Qi", "Bai-Ni Guo" ], "comment": "7 pages", "journal": "Bai-Ni Guo and Feng Qi, Sharp bounds for harmonic numbers, Applied Mathematics and Computation 218 (2011), no. 3, 991--995", "doi": "10.1016/j.amc.2011.01.089", "categories": [ "math.CA" ], "abstract": "In the paper, we first survey some results on inequalities for bounding harmonic numbers or Euler-Mascheroni constant, and then we establish a new sharp double inequality for bounding harmonic numbers as follows: For $n\\in\\mathbb{N}$, the double inequality -\\frac{1}{12n^2+{2(7-12\\gamma)}/{(2\\gamma-1)}}\\le H(n)-\\ln n-\\frac1{2n}-\\gamma<-\\frac{1}{12n^2+6/5} is valid, with equality in the left-hand side only when $n=1$, where the scalars $\\frac{2(7-12\\gamma)}{2\\gamma-1}$ and $\\frac65$ are the best possible.", "revisions": [ { "version": "v1", "updated": "2010-02-20T07:56:38.000Z" } ], "analyses": { "subjects": [ "26D15", "33B15" ], "keywords": [ "sharp bounds", "bounding harmonic numbers", "first survey", "euler-mascheroni constant", "sharp double inequality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3856Q" } } }