{ "id": "1002.3680", "version": "v2", "published": "2010-02-19T08:23:35.000Z", "updated": "2011-05-09T11:20:44.000Z", "title": "An extension of bifractional Brownian motion", "authors": [ "Xavier Bardina", "Khalifa Es-Sebaiy" ], "categories": [ "math.PR" ], "abstract": "In this paper we introduce and study a self-similar Gaussian process that is the bifractional Brownian motion $B^{H,K}$ with parameters $H\\in (0,1)$ and $K\\in(1,2)$ such that $HK\\in(0,1)$. A remarkable difference between the case $K\\in(0,1)$ and our situation is that this process is a semimartingale when $2HK=1$.", "revisions": [ { "version": "v2", "updated": "2011-05-09T11:20:44.000Z" } ], "analyses": { "keywords": [ "bifractional brownian motion", "self-similar gaussian process", "parameters", "difference" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3680B" } } }