{ "id": "1002.3457", "version": "v6", "published": "2010-02-18T09:15:50.000Z", "updated": "2011-12-07T14:04:00.000Z", "title": "A non-recursive criterion for weights of a highest weight module for an affine Lie algebra", "authors": [ "O. Barshevsky", "M. Fayers", "M. Schaps" ], "categories": [ "math.RT" ], "abstract": "Let $\\Lambda$ be a dominant integral weight of level $k$ for the affine Lie algebra $\\mathfrak g$ and let $\\alpha$ be a non-negative integral combination of simple roots. We address the question of whether the weight $\\eta=\\Lambda-\\alpha$ lies in the set $P(\\Lambda)$ of weights in the irreducible highest-weight module with highest weight $\\Lambda$. We give a non-recursive criterion in terms of the coefficients of $\\alpha$ modulo an integral lattice $kM$, where $M$ is the lattice parameterizing the abelian normal subgroup $T$ of the Weyl group. The criterion requires the preliminary computation of a set no larger than the fundamental region for $kM$, and we show how this set can be efficiently calculated.", "revisions": [ { "version": "v6", "updated": "2011-12-07T14:04:00.000Z" } ], "analyses": { "subjects": [ "17B67" ], "keywords": [ "affine lie algebra", "highest weight module", "non-recursive criterion", "dominant integral weight", "abelian normal subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3457B" } } }