{ "id": "1002.3034", "version": "v2", "published": "2010-02-16T09:00:44.000Z", "updated": "2010-05-20T11:12:27.000Z", "title": "An estimation of Hempel distance by using Reeb graph", "authors": [ "Ayako Ido" ], "comment": "17 pages, 22 figures", "categories": [ "math.GT" ], "abstract": "Let $P, Q$ be Heegaard surfaces of a closed orientable 3-manifold. In this paper, we introduce a method for giving an upper bound of Hempel distance of $P$ by using the Reeb graph derived from a certain horizontal arc in the ambient space $[0,1]\\times[0,1]$ of the Rubinstein-Scharlemann graphic derived from $P$ and $Q$. This is a refinement of a part of Johnson's arguments used for determining stable genera required for flipping high distance Heegaard splittings.", "revisions": [ { "version": "v2", "updated": "2010-05-20T11:12:27.000Z" } ], "analyses": { "subjects": [ "57M27", "57M50", "57M99" ], "keywords": [ "reeb graph", "hempel distance", "flipping high distance heegaard splittings", "estimation", "horizontal arc" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3034I" } } }