{ "id": "1002.2887", "version": "v1", "published": "2010-02-15T15:09:08.000Z", "updated": "2010-02-15T15:09:08.000Z", "title": "Analysis on Path Spaces over Riemmannian Manifolds with Boundary", "authors": [ "Feng-Yu Wang" ], "comment": "14 pages", "categories": [ "math.PR", "math.DG" ], "abstract": "By using Hsu's multiplicative functional for the Neumann heat equation, a natural damped gradient operator is defined for the reflecting Brownian motion on compact manifolds with boundary. This operator is linked to quasi-invariant flows in terms of a integration by parts formula, which leads to the standard log-Sobolev inequality for the associated Dirichlet form on the path space.", "revisions": [ { "version": "v1", "updated": "2010-02-15T15:09:08.000Z" } ], "analyses": { "subjects": [ "60J60", "58G32" ], "keywords": [ "path space", "riemmannian manifolds", "neumann heat equation", "natural damped gradient operator", "standard log-sobolev inequality" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.2887W" } } }