{ "id": "1002.2770", "version": "v1", "published": "2010-02-14T12:04:17.000Z", "updated": "2010-02-14T12:04:17.000Z", "title": "Optimal Shape for Elliptic Problems with Random Perturbations", "authors": [ "Giuseppe Buttazzo", "Faustino Maestre" ], "comment": "17 pages, 6 figures", "categories": [ "math.OC", "math.AP" ], "abstract": "In this paper we analyze the relaxed form of a shape optimization problem with state equation $\\{{array}{ll} -div \\big(a(x)Du\\big)=f\\qquad\\hbox{in}D \\hbox{boundary conditions on}\\partial D. {array}.$ The new fact is that the term $f$ is only known up to a random perturbation $\\xi(x,\\omega)$. The goal is to find an optimal coefficient $a(x)$, fulfilling the usual constraints $\\alpha\\le a\\le\\beta$ and $\\displaystyle\\int_D a(x) dx\\le m$, which minimizes a cost function of the form $$\\int_\\Omega\\int_Dj\\big(x,\\omega,u_a(x,\\omega)\\big) dx dP(\\omega).$$ Some numerical examples are shown in the last section, to stress the difference with respect to the case with no perturbation.", "revisions": [ { "version": "v1", "updated": "2010-02-14T12:04:17.000Z" } ], "analyses": { "subjects": [ "49Q10", "49J45", "46E35", "47A10", "74P05" ], "keywords": [ "random perturbation", "elliptic problems", "optimal shape", "shape optimization problem", "state equation" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.2770B" } } }