{ "id": "1002.2192", "version": "v1", "published": "2010-02-10T20:00:10.000Z", "updated": "2010-02-10T20:00:10.000Z", "title": "More on cardinal invariants of analytic P-ideals", "authors": [ "Barnabás Farkas", "Lajos Soukup" ], "journal": "Comment. Math. Univ. Carolin., 50(2009), 281-295", "categories": [ "math.LO" ], "abstract": "Given an ideal $I$ on $\\omega$ let $a(I) $ ($\\bar{a}(I)$) be minimum of the cardinalities of infinite (uncountable) maximal $I$-almost disjoint subsets of $[{\\omega}]^{\\omega}$, and denote $b_I$ and$d_I$ the unbounding and dominating numbers of $(\\omega^\\omega,\\le_I)$. We show that (1) $a(I)>omega$ if $I$ is a summable ideal; (2) $a(Z)=\\omega$ and $\\bar{a}(Z)\\le a$ if $Z$ is a tall density ideal, (3) $b\\le \\bar{a}(I)$, and $b_I=b$ and $d_I=d$, for any analytic P-ideal $I$ on $\\omega$. Given an analytic $P$-ideal $I$ we investigate the relationship between the Sack, the $I$-bounding, $I$-dominating and ${\\omega}^{\\omega}$-bounding properties of a given poset $P$. For example, for the density zero ideal $Z$ we can prove: (i) a poset $P$ is $Z$-bounding iff it has the Sacks property, (ii) if $P$ adds a slalom capturing all ground model reals then $P$ is $Z$-dominating.", "revisions": [ { "version": "v1", "updated": "2010-02-10T20:00:10.000Z" } ], "analyses": { "subjects": [ "03E35", "03E17" ], "keywords": [ "analytic p-ideal", "cardinal invariants", "tall density ideal", "density zero ideal", "ground model reals" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.2192F" } } }