{ "id": "1002.2005", "version": "v5", "published": "2010-02-10T19:15:51.000Z", "updated": "2012-06-01T08:19:38.000Z", "title": "Projective Isomonodromy and Galois Groups", "authors": [ "Claude Mitschi", "Michael F. Singer" ], "comment": "Version that will appear in the Proceedings of the American Mathematical Society", "categories": [ "math.CA", "math.DS" ], "abstract": "In this article we introduce the notion of projective isomonodromy, which is a special type of monodromy evolving deformation of linear differential equations, based on the example of the Darboux-Halphen equation. We give an algebraic condition for a paramaterized linear differential equation to be projectively isomonodromic, in terms of the derived group of its parameterized Picard-Vessiot group.", "revisions": [ { "version": "v5", "updated": "2012-06-01T08:19:38.000Z" } ], "analyses": { "subjects": [ "34M56", "12H05", "34M55" ], "keywords": [ "projective isomonodromy", "galois groups", "paramaterized linear differential equation", "monodromy evolving deformation", "algebraic condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.2005M" } } }