{ "id": "1002.1935", "version": "v3", "published": "2010-02-09T18:27:48.000Z", "updated": "2010-07-28T16:15:21.000Z", "title": "Boundary regularity for elliptic systems under a natural growth condition", "authors": [ "Lisa Beck" ], "comment": "revised version, accepted for publication in Ann. Mat. Pura Appl", "categories": [ "math.AP" ], "abstract": "We consider weak solutions $u \\in u_0 + W^{1,2}_0(\\Omega,R^N) \\cap L^{\\infty}(\\Omega,R^N)$ of second order nonlinear elliptic systems of the type $- div a (\\cdot, u, Du) = b(\\cdot,u,Du)$ in $\\Omega$ with an inhomogeneity satisfying a natural growth condition. In dimensions $n \\in \\{2,3,4\\}$ we show that $\\mathcal{H}^{n-1}$-almost every boundary point is a regular point for $Du$, provided that the boundary data and the coefficients are sufficiently smooth.", "revisions": [ { "version": "v3", "updated": "2010-07-28T16:15:21.000Z" } ], "analyses": { "subjects": [ "35J45", "35J55" ], "keywords": [ "natural growth condition", "boundary regularity", "second order nonlinear elliptic systems", "weak solutions", "boundary data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.1935B" } } }