{ "id": "1002.1455", "version": "v1", "published": "2010-02-07T14:19:16.000Z", "updated": "2010-02-07T14:19:16.000Z", "title": "Potential Wadge classes", "authors": [ "Dominique Lecomte" ], "categories": [ "math.LO" ], "abstract": "Let $\\bf\\Gamma$ be a Borel class, or a Wadge class of Borel sets, and $2\\leq d\\leq\\omega$ a cardinal. We study the Borel subsets of ${\\mathbb R}^d$ that can be made $\\bf\\Gamma$ by refining the Polish topology on the real line. These sets are called potentially $\\bf\\Gamma$. We give a test to recognize potentially $\\bf\\Gamma$ sets.", "revisions": [ { "version": "v1", "updated": "2010-02-07T14:19:16.000Z" } ], "analyses": { "subjects": [ "03E15", "54H05", "28A05", "26A21" ], "keywords": [ "potential wadge classes", "borel sets", "borel class", "borel subsets", "real line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.1455L" } } }