{ "id": "1002.1138", "version": "v1", "published": "2010-02-05T07:22:09.000Z", "updated": "2010-02-05T07:22:09.000Z", "title": "Some $p$-ranks related to a conic in $PG(2,q)$", "authors": [ "Junhua Wu" ], "categories": [ "math.CO" ], "abstract": "Let $\\A$ be the incidence matrix of lines and points of the classical projective plane $PG(2,q)$ with $q$ odd. With respect to a conic in $PG(2,q)$, the matrix $\\A$ is partitioned into 9 submatrices. The rank of each of these submatices over $\\Ff_q$, the defining field of $PG(2,q)$, is determined.", "revisions": [ { "version": "v1", "updated": "2010-02-05T07:22:09.000Z" } ], "analyses": { "keywords": [ "incidence matrix", "classical projective plane", "submatrices" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.1138W" } } }