{ "id": "1002.0494", "version": "v1", "published": "2010-02-02T14:32:47.000Z", "updated": "2010-02-02T14:32:47.000Z", "title": "Accurate estimate of the critical exponent $ν$ for self-avoiding walks via a fast implementation of the pivot algorithm", "authors": [ "Nathan Clisby" ], "comment": "5 pages, 3 figures", "journal": "Phys. Rev. Lett. 104, 055702 (2010)", "doi": "10.1103/PhysRevLett.104.055702", "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP", "physics.chem-ph" ], "abstract": "We introduce a fast implementation of the pivot algorithm for self-avoiding walks, which we use to obtain large samples of walks on the cubic lattice of up to $33 \\times 10^6$ steps. Consequently the critical exponent $\\nu$ for three-dimensional self-avoiding walks is determined to great accuracy; the final estimate is $\\nu=0.587597(7)$. The method can be adapted to other models of polymers with short-range interactions, on the lattice or in the continuum.", "revisions": [ { "version": "v1", "updated": "2010-02-02T14:32:47.000Z" } ], "analyses": { "subjects": [ "64.60.De", "05.10.-a", "64.70.km", "68.35.Rh" ], "keywords": [ "fast implementation", "pivot algorithm", "critical exponent", "accurate estimate", "large samples" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "year": 2010, "month": "Feb", "volume": 104, "number": 5, "pages": "055702" }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010PhRvL.104e5702C" } } }