{ "id": "1002.0282", "version": "v2", "published": "2010-02-01T16:42:14.000Z", "updated": "2010-08-16T11:09:51.000Z", "title": "Ergodicity for infinite particle systems with locally conserved quantities", "authors": [ "J. Inglis", "M. Neklyudov", "B. Zegarlinski" ], "comment": "34 pages; introduction rewritten, minor corrections, references added", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We analyse certain degenerate infinite dimensional sub-elliptic generators, and obtain estimates on the long-time behaviour of the corresponding Markov semigroups that describe a certain model of heat conduction. In particular, we establish ergodicity of the system for a family of invariant measures, and show that the optimal rate of convergence to equilibrium is polynomial. Consequently, there is no spectral gap, but a Liggett-Nash type inequality is shown to hold.", "revisions": [ { "version": "v2", "updated": "2010-08-16T11:09:51.000Z" } ], "analyses": { "subjects": [ "82C31", "60K35", "82C22" ], "keywords": [ "infinite particle systems", "locally conserved quantities", "degenerate infinite dimensional sub-elliptic generators", "ergodicity", "liggett-nash type inequality" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.0282I" } } }