{ "id": "1002.0255", "version": "v1", "published": "2010-02-01T14:53:26.000Z", "updated": "2010-02-01T14:53:26.000Z", "title": "On Manin's conjecture for a family of Châtelet surfaces", "authors": [ "R. de la Bretèche", "T. D. Browning", "E. Peyre" ], "categories": [ "math.NT" ], "abstract": "The Manin conjecture is established for Ch\\^atelet surfaces over Q arising as minimal proper smooth models of the surface Y^2+Z^2=f(X) where f is a totally reducible polynomial of degree 3 without repeated roots. These surfaces do not satisfy weak approximation.", "revisions": [ { "version": "v1", "updated": "2010-02-01T14:53:26.000Z" } ], "analyses": { "subjects": [ "14E08", "11D45", "12G05", "14F43" ], "keywords": [ "manins conjecture", "châtelet surfaces", "minimal proper smooth models", "satisfy weak approximation", "manin conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.0255D" } } }