{ "id": "1001.5120", "version": "v1", "published": "2010-01-28T08:18:33.000Z", "updated": "2010-01-28T08:18:33.000Z", "title": "Asymptotics of eigenvalues of non-self adjoint Schrödinger operators on a half-line", "authors": [ "Kwang C. Shin" ], "comment": "No figure. To appear in CMFT", "journal": "CMFT 10 (2010) 111-133.", "categories": [ "math-ph", "hep-th", "math.MP", "math.SP", "quant-ph" ], "abstract": "We study the eigenvalues of the non-self adjoint problem $-y^{\\prime\\prime}+V(x)y=E y$ on the half-line $0\\leq x<+\\infty$ under the Robin boundary condition at $x=0$, where $V$ is a monic polynomial of degree $\\geq 3$. We obtain a Bohr-Sommerfeld-like asymptotic formula for $E_n$ that depends on the boundary conditions. Consequently, we solve certain inverse spectral problems, recovering the potential $V$ and boundary condition from the first $(m+2)$ terms of the asymptotic formula.", "revisions": [ { "version": "v1", "updated": "2010-01-28T08:18:33.000Z" } ], "analyses": { "subjects": [ "34L20", "34L40" ], "keywords": [ "non-self adjoint schrödinger operators", "eigenvalues", "robin boundary condition", "non-self adjoint problem", "inverse spectral problems" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.5120S" } } }