{ "id": "1001.4724", "version": "v2", "published": "2010-01-26T15:32:58.000Z", "updated": "2010-03-05T16:15:50.000Z", "title": "Sharp weighted estimates for approximating dyadic operators", "authors": [ "David Cruz-Uribe", "Jose Maria Martell", "Carlos Perez" ], "comment": "To appear in the Electronic Research Announcements in Mathematical Sciences", "journal": "Electron. Res. Announc. Math. Sci. 17 (2010), 12-19", "doi": "10.3934/era.2010.17.12", "categories": [ "math.CA", "math.FA" ], "abstract": "We give a new proof of the sharp weighted $L^2$ inequality ||T||_{L^2(w)} \\leq c [w]_{A_2} where $T$ is the Hilbert transform, a Riesz transform, the Beurling-Ahlfors operator or any operator that can be approximated by Haar shift operators. Our proof avoids the Bellman function technique and two weight norm inequalities. We use instead a recent result due to A. Lerner to estimate the oscillation of dyadic operators.", "revisions": [ { "version": "v2", "updated": "2010-03-05T16:15:50.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25" ], "keywords": [ "approximating dyadic operators", "sharp weighted estimates", "bellman function technique", "weight norm inequalities", "haar shift operators" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.4724C" } } }