{ "id": "1001.4702", "version": "v1", "published": "2010-01-26T14:26:21.000Z", "updated": "2010-01-26T14:26:21.000Z", "title": "Invariance principle for the random conductance model with unbounded conductances", "authors": [ "M. T. Barlow", "J. -D. Deuschel" ], "comment": "Published in at http://dx.doi.org/10.1214/09-AOP481 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2010, Vol. 38, No. 1, 234-276", "doi": "10.1214/09-AOP481", "categories": [ "math.PR" ], "abstract": "We study a continuous time random walk $X$ in an environment of i.i.d. random conductances $\\mu_e\\in[1,\\infty)$. We obtain heat kernel bounds and prove a quenched invariance principle for $X$. This holds even when ${\\mathbb{E}}\\mu_e=\\infty$.", "revisions": [ { "version": "v1", "updated": "2010-01-26T14:26:21.000Z" } ], "analyses": { "subjects": [ "60K37", "60F17", "82C41" ], "keywords": [ "random conductance model", "unbounded conductances", "continuous time random walk", "heat kernel bounds", "quenched invariance principle" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.4702B" } } }