{ "id": "1001.4360", "version": "v1", "published": "2010-01-25T09:54:59.000Z", "updated": "2010-01-25T09:54:59.000Z", "title": "The cluster character for cyclic quivers", "authors": [ "Ming Ding", "Fan Xu" ], "comment": "11 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "We define an analogue of the Caldero-Chapoton map (\\cite{CC}) for the cluster category of finite dimensional nilpotent representations over a cyclic quiver. We prove that it is a cluster character (in the sense of \\cite{Palu}) and satisfies some inductive formulas for the multiplication between the generalized cluster variables (the images of objects of the cluster category under the map). Moreover, we construct a $\\mathbb{Z}$-basis for the algebras generated by all generalized cluster variables.", "revisions": [ { "version": "v1", "updated": "2010-01-25T09:54:59.000Z" } ], "analyses": { "subjects": [ "18E30", "16G20" ], "keywords": [ "cluster character", "cyclic quiver", "generalized cluster variables", "finite dimensional nilpotent representations", "cluster category" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }