{ "id": "1001.4170", "version": "v1", "published": "2010-01-23T16:33:45.000Z", "updated": "2010-01-23T16:33:45.000Z", "title": "The sum of digits of $n$ and $n^2$", "authors": [ "K. G. Hare", "S. Laishram", "T. Stoll" ], "comment": "16 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $s_q(n)$ denote the sum of the digits in the $q$-ary expansion of an integer $n$. In 2005, Melfi examined the structure of $n$ such that $s_2(n) = s_2(n^2)$. We extend this study to the more general case of generic $q$ and polynomials $p(n)$, and obtain, in particular, a refinement of Melfi's result. We also give a more detailed analysis of the special case $p(n) = n^2$, looking at the subsets of $n$ where $s_q(n) = s_q(n^2) = k$ for fixed $k$.", "revisions": [ { "version": "v1", "updated": "2010-01-23T16:33:45.000Z" } ], "analyses": { "keywords": [ "special case", "melfis result", "ary expansion", "general case", "refinement" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }