{ "id": "1001.4081", "version": "v2", "published": "2010-01-22T21:18:47.000Z", "updated": "2010-11-30T20:05:22.000Z", "title": "Multiple recurrence and convergence along the primes", "authors": [ "Trevor D. Wooley", "Tamar D. Ziegler" ], "comment": "Some changes made in light of comments from the referees", "categories": [ "math.DS", "math.NT" ], "abstract": "Let $E\\subset \\mathbb Z$ be a set of positive upper density. Suppose that $P_1,P_2,..., P_k\\in \\mathbb Z[X]$ are polynomials having zero constant terms. We show that the set $E\\cap (E-P_1(p-1))\\cap ... \\cap (E-P_k(p-1))$ is non-empty for some prime number $p$. Furthermore, we prove convergence in $L^2$ of polynomial multiple averages along the primes.", "revisions": [ { "version": "v2", "updated": "2010-11-30T20:05:22.000Z" } ], "analyses": { "subjects": [ "11B30", "11A41", "28D05", "37A05" ], "keywords": [ "multiple recurrence", "convergence", "zero constant terms", "polynomial multiple averages", "positive upper density" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.4081W" } } }