{ "id": "1001.2413", "version": "v1", "published": "2010-01-14T10:52:05.000Z", "updated": "2010-01-14T10:52:05.000Z", "title": "Branching processes in random environment which extinct at a given moment", "authors": [ "C. Boeinghoff", "E. E. Dyakonova", "G. Kersting", "V. A. Vatutin" ], "comment": "21 pages; submitted to Markov Processes and Related Fields", "journal": "Markov Process. Related Fields 16 (2010), no. 2, 329-350", "categories": [ "math.PR" ], "abstract": "Let ${Z_{n},n\\geq 0} $ be a critical branching process in random environment and let $T$ be its moment of extinction. Under the annealed approach we prove, as $n\\to \\infty ,$ a limit theorem for the number of particles in the process at moment $n$ given $T=n+1$ and a functional limit theorem for the properly scaled process ${Z_{nt},\\delta \\leq t\\leq 1-\\delta} $ given $T=n+1$ and $\\delta \\in (0,1/2)$.", "revisions": [ { "version": "v1", "updated": "2010-01-14T10:52:05.000Z" } ], "analyses": { "subjects": [ "60J80", "60G50", "60F17" ], "keywords": [ "random environment", "branching processes", "functional limit theorem", "extinction", "critical branching process" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }