{ "id": "1001.2383", "version": "v1", "published": "2010-01-14T08:24:42.000Z", "updated": "2010-01-14T08:24:42.000Z", "title": "A fractional porous medium equation", "authors": [ "Arturo de Pablo", "Fernando Quiros", "Ana Rodriguez", "Juan Luis Vazquez" ], "categories": [ "math.AP" ], "abstract": "We develop a theory of existence, uniqueness and regularity for a porous medium equation with fractional diffusion, $\\frac{\\partial u}{\\partial t} + (-\\Delta)^{1/2} (|u|^{m-1}u)=0$ in $\\mathbb{R}^N$, with $m>m_*=(N-1)/N$, $N\\ge1$ and $f\\in L^1(\\mathbb{R}^N)$. An $L^1$-contraction semigroup is constructed and the continuous dependence on data and exponent is established. Nonnegative solutions are proved to be continuous and strictly positive for all $x\\in\\mathbb{R}^N$, $t>0$.", "revisions": [ { "version": "v1", "updated": "2010-01-14T08:24:42.000Z" } ], "analyses": { "subjects": [ "26A33", "35K55" ], "keywords": [ "fractional porous medium equation", "fractional diffusion", "contraction semigroup", "regularity", "continuous dependence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.2383D" } } }