{ "id": "1001.2340", "version": "v1", "published": "2010-01-13T23:56:59.000Z", "updated": "2010-01-13T23:56:59.000Z", "title": "The asymptotics a Bessel-kernel determinant which arises in Random Matrix Theory", "authors": [ "Torsten Ehrhardt" ], "comment": "50 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "In Random Matrix Theory the local correlations of the Laguerre and Jacobi Unitary Ensemble in the hard edge scaling limit can be described in terms of the Bessel kernel (containing a parameter $\\alpha$). In particular, the so-called hard edge gap probabilities can be expressed as the Fredholm determinants of the corresponding integral operator restricted to the finite interval [0, R]. Using operator theoretic methods we are going to compute their asymptotics as R goes to infinity under certain assumption on the parameter $\\alpha$.", "revisions": [ { "version": "v1", "updated": "2010-01-13T23:56:59.000Z" } ], "analyses": { "subjects": [ "47B35" ], "keywords": [ "random matrix theory", "bessel-kernel determinant", "asymptotics", "hard edge gap probabilities", "operator theoretic methods" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.2340E" } } }