{ "id": "1001.1783", "version": "v3", "published": "2010-01-12T02:49:44.000Z", "updated": "2011-03-20T19:01:48.000Z", "title": "The number of nonzero binomial coefficients modulo p^alpha", "authors": [ "Eric Rowland" ], "comment": "10 pages; publication version", "journal": "Journal of Combinatorics and Number Theory 3 (2011) 15-25", "categories": [ "math.NT", "math.CO" ], "abstract": "In 1947 Fine obtained an expression for the number of binomial coefficients on row n of Pascal's triangle that are nonzero modulo p. In this paper we use Kummer's theorem to generalize Fine's theorem to prime powers, expressing the number of nonzero binomial coefficients modulo p^alpha as a sum over certain integer partitions. For fixed alpha, this expression can be rewritten to show explicit dependence on the number of occurrences of each subword in the base-p representation of n.", "revisions": [ { "version": "v3", "updated": "2011-03-20T19:01:48.000Z" } ], "analyses": { "subjects": [ "11B65", "11A63", "05A17", "05A15" ], "keywords": [ "nonzero binomial coefficients modulo", "expression", "base-p representation", "explicit dependence", "pascals triangle" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.1783R" } } }