{ "id": "1001.1720", "version": "v1", "published": "2010-01-11T18:12:35.000Z", "updated": "2010-01-11T18:12:35.000Z", "title": "The limit set of subgroups of arithmetic groups in $PSL(2,C)^q \\times PSL(2,R)^r$", "authors": [ "Slavyana Geninska" ], "comment": "34 pages", "categories": [ "math.GR", "math.GT" ], "abstract": "While lattices in semi-simple Lie groups are studied very well, only little is known about discrete subgroups of infinite covolume. The main class of examples are Schottky groups. Here we investigate some new examples. We consider subgroups $\\Gamma$ of arithmetic groups in $PSL(2,C)^q \\times PSL(2,R)^r$ with $q+r>1$ and their limit set. We prove that the projective limit set of a nonelementary finitely generated $\\Gamma$ consists of exactly one point if and only if one and hence all projections of $\\Gamma$ to the simple factors of $PSL(2,C)^q \\times PSL(2,R)^r$ are subgroups of arithmetic Fuchsian or Kleinian groups. Furthermore, we study the topology of the whole limit set of $\\Gamma$. In particular, we give a necessary and sufficient condition for the limit set to be homeomorphic to a circle.", "revisions": [ { "version": "v1", "updated": "2010-01-11T18:12:35.000Z" } ], "analyses": { "subjects": [ "20H10", "11F06", "22E40" ], "keywords": [ "arithmetic groups", "semi-simple lie groups", "discrete subgroups", "main class", "sufficient condition" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.1720G" } } }