{ "id": "1001.1055", "version": "v1", "published": "2010-01-07T14:53:41.000Z", "updated": "2010-01-07T14:53:41.000Z", "title": "Simultaneous zeros of a Cubic and Quadratic form", "authors": [ "Jahan Zahid" ], "comment": "19 pages", "doi": "10.1112/jlms/jdr018", "categories": [ "math.NT", "math.AG" ], "abstract": "We verify a conjecture of Emil Artin, for the case of a Cubic and Quadratic form over any $p$-adic field, provided the cardinality of the residue class field exceeds 293. That is any Cubic and Quadratic form with at least 14 variables has a non-trivial $p$-adic zero, with the aforementioned condition on the residue class field. A crucial step in the proof, involves generalizing a $p$-adic minimization procedure due to W. M. Schmidt to hold for systems of forms of arbitrary degrees.", "revisions": [ { "version": "v1", "updated": "2010-01-07T14:53:41.000Z" } ], "analyses": { "subjects": [ "11D88", "11D72", "11G25", "14G20" ], "keywords": [ "quadratic form", "simultaneous zeros", "residue class field exceeds", "adic minimization procedure", "emil artin" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }