{ "id": "1001.0461", "version": "v1", "published": "2010-01-04T08:59:46.000Z", "updated": "2010-01-04T08:59:46.000Z", "title": "Rank-width of Random Graphs", "authors": [ "Choongbum Lee", "Joonkyung Lee", "Sang-il Oum" ], "comment": "10 pages", "journal": "J. Graph Theory 70(July 2012)(3), pp. 339-347", "doi": "10.1002/jgt.20620", "categories": [ "math.CO" ], "abstract": "Rank-width of a graph G, denoted by rw(G), is a width parameter of graphs introduced by Oum and Seymour (2006). We investigate the asymptotic behavior of rank-width of a random graph G(n,p). We show that, asymptotically almost surely, (i) if 0 1, then rw(G(n,p)) > r n for some r = r(c), and (iv) if p <= c/n and c<1, then rw(G(n,p)) <=2. As a corollary, we deduce that G(n,p) has linear tree-width whenever p=c/n for each c>1, answering a question of Gao (2006).", "revisions": [ { "version": "v1", "updated": "2010-01-04T08:59:46.000Z" } ], "analyses": { "subjects": [ "05C80", "05C78" ], "keywords": [ "random graph", "rank-width", "width parameter" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1001.0461L" } } }