{ "id": "1001.0410", "version": "v2", "published": "2010-01-03T21:08:28.000Z", "updated": "2010-02-01T16:16:23.000Z", "title": "Nonlinear porous medium flow with fractional potential pressure", "authors": [ "Luis A. Caffarelli", "Juan L. Vazquez" ], "comment": "32 pages, Latex", "categories": [ "math.AP" ], "abstract": "We study a porous medium equation, with nonlocal diffusion effects given by an inverse fractional Laplacian operator. We pose the problem in n-dimensional space for all t>0 with bounded and compactly supported initial data, and prove existence of a weak and bounded solution that propagates with finite speed, a property that is nor shared by other fractional diffusion models.", "revisions": [ { "version": "v2", "updated": "2010-02-01T16:16:23.000Z" } ], "analyses": { "subjects": [ "35K55", "35K65" ], "keywords": [ "nonlinear porous medium flow", "fractional potential pressure", "inverse fractional laplacian operator", "nonlocal diffusion effects", "fractional diffusion models" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00205-011-0420-4", "journal": "Archive for Rational Mechanics and Analysis", "year": 2011, "month": "Nov", "volume": 202, "number": 2, "pages": 537 }, "note": { "typesetting": "LaTeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011ArRMA.202..537C" } } }