{ "id": "0912.4770", "version": "v2", "published": "2009-12-24T20:24:37.000Z", "updated": "2011-03-08T16:51:05.000Z", "title": "Every plane graph of maximum degree 8 has an edge-face 9-colouring", "authors": [ "Ross J. Kang", "Jean-Sébastien Sereni", "Matěj Stehlík" ], "comment": "29 pages, 1 figure; v2 corrects a contraction error in v1; to appear in SIDMA", "journal": "SIAM Journal on Discrete Mathematics 25(2): 514-533, 2011", "doi": "10.1137/090781206", "categories": [ "math.CO" ], "abstract": "An edge-face colouring of a plane graph with edge set $E$ and face set $F$ is a colouring of the elements of $E \\cup F$ such that adjacent or incident elements receive different colours. Borodin proved that every plane graph of maximum degree $\\Delta\\ge10$ can be edge-face coloured with $\\Delta+1$ colours. Borodin's bound was recently extended to the case where $\\Delta=9$. In this paper, we extend it to the case $\\Delta=8$.", "revisions": [ { "version": "v2", "updated": "2011-03-08T16:51:05.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "plane graph", "maximum degree", "edge set", "borodins bound", "face set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.4770K" } } }