{ "id": "0912.3994", "version": "v3", "published": "2009-12-20T08:19:47.000Z", "updated": "2011-01-31T09:50:22.000Z", "title": "The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues with Dirichlet boundary condition on Riemannian manifolds", "authors": [ "Genqian Liu" ], "comment": "42 pages", "categories": [ "math.AP", "math.SP" ], "abstract": "Let $\\Omega$ be a bounded domain with $C^2$-smooth boundary in an $n$-dimensional oriented Riemannian manifold. It is well-known that for the bi-harmonic equation $\\Delta^2 u=0$ in $\\Omega$ with the $0$-Dirichlet boundary condition, there exists an infinite set $\\{u_k\\}$ of biharmonic functions in $\\Omega$ with positive eigenvalues $\\{\\lambda_k\\}$ satisfying $\\Delta u_k+ \\lambda_k \\varrho \\frac{\\partial u_k}{\\partial \\nu}=0$ on the boundary $\\partial \\Omega$. In this paper, by a new method we establish the Weyl-type asymptotic formula for the counting function of the biharmonic Stekloff eigenvalues $\\lambda_k$.", "revisions": [ { "version": "v3", "updated": "2011-01-31T09:50:22.000Z" } ], "analyses": { "subjects": [ "35P20", "58C40", "58J50" ], "keywords": [ "dirichlet boundary condition", "weyl-type asymptotic formula", "biharmonic steklov eigenvalues", "biharmonic stekloff eigenvalues", "dimensional oriented riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.3994L" } } }