{ "id": "0912.3645", "version": "v2", "published": "2009-12-18T11:10:45.000Z", "updated": "2011-02-02T12:55:37.000Z", "title": "On minimal finite quotients of outer automorphism groups of free groups", "authors": [ "Mattia Mecchia", "Bruno Zimmermann" ], "comment": "6 pages", "categories": [ "math.GR", "math.GT" ], "abstract": "We prove that, for n=3 and 4, the minimal nonabelian finite factor group of the outer automorphism group Out F_n of a free group of rank n is the linear group PSL_n(Z_2) (conjecturally, this may remain true for arbitrary rank n > 2). We also discuss some computational results on low index subgroups of Aut F_n and Out F_n, for n = 3 and 4, using presentations of these groups.", "revisions": [ { "version": "v2", "updated": "2011-02-02T12:55:37.000Z" } ], "analyses": { "subjects": [ "20E05", "20F28", "57M07" ], "keywords": [ "outer automorphism group", "minimal finite quotients", "free group", "minimal nonabelian finite factor group", "low index subgroups" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.3645M" } } }