{ "id": "0912.3282", "version": "v1", "published": "2009-12-16T23:08:10.000Z", "updated": "2009-12-16T23:08:10.000Z", "title": "The Ropelengths of Knots Are Almost Linear in Terms of Their Crossing Numbers", "authors": [ "Yuanan Diao", "Claus Ernst", "Attila Por", "Uta Ziegler" ], "comment": "53 pages, 28 figures", "categories": [ "math.GT" ], "abstract": "For a knot or link K, let L(K) be the ropelength of K and Cr(K) be the crossing number of K. In this paper, we show that there exists a constant a>0 such that L(K) is bounded above by a Cr(K) ln^5 (Cr(K)) for any knot K. This result shows that the upper bound of the ropelength of any knot is almost linear in terms of its minimum crossing number.", "revisions": [ { "version": "v1", "updated": "2009-12-16T23:08:10.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "ropelength", "minimum crossing number", "upper bound" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.3282D" } } }