{ "id": "0912.3061", "version": "v2", "published": "2009-12-16T07:01:56.000Z", "updated": "2010-01-24T19:39:07.000Z", "title": "Solvable rational extension of translationally shape invariant potentials", "authors": [ "Yves Grandati", "Alain Berard" ], "categories": [ "math-ph", "math.MP", "quant-ph" ], "abstract": "Combining recent results on rational solutions of the Riccati-Schr\\\"odinger equations for shape invariant potentials to the scheme developed by Fellows and Smith in the case of the one dimensional harmonic oscillator, we show that it is possible to generate an infinite set of solvable rational extensions for every translationally shape invariant potential of the second category.", "revisions": [ { "version": "v2", "updated": "2010-01-24T19:39:07.000Z" } ], "analyses": { "keywords": [ "translationally shape invariant potential", "solvable rational extension", "dimensional harmonic oscillator", "second category", "infinite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.3061G" } } }