{ "id": "0912.3010", "version": "v1", "published": "2009-12-15T21:29:39.000Z", "updated": "2009-12-15T21:29:39.000Z", "title": "A Calderon Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain", "authors": [ "Fedor Nazarov", "Richard Oberlin", "Christoph Thiele" ], "comment": "16 pages", "categories": [ "math.CA" ], "abstract": "We introduce a Calderon Zygmund decomposition such that the bad function has vanishing integral against a number of pure frequencies. Then we prove a variation norm variant of a maximal inequality for several frequencies due to Bourgain. To obtain the full range of Lp estimates we apply the multi frequency Calderon Zygmund decomposition.", "revisions": [ { "version": "v1", "updated": "2009-12-15T21:29:39.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "multiple frequencies", "multi frequency calderon zygmund decomposition", "application", "variation norm variant", "pure frequencies" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.3010N" } } }