{ "id": "0912.2919", "version": "v2", "published": "2009-12-15T15:10:31.000Z", "updated": "2011-05-25T20:10:13.000Z", "title": "Toughness and Vertex Degrees", "authors": [ "D. Bauer", "H. J. Broersma", "J. van den Heuvel", "N. Kahl", "E. Schmeichel" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "We study theorems giving sufficient conditions on the vertex degrees of a graph $G$ to guarantee $G$ is $t$-tough. We first give a best monotone theorem when $t\\ge1$, but then show that for any integer $k\\ge1$, a best monotone theorem for $t=\\frac1k\\le 1$ requires at least $f(k)\\cdot|V(G)|$ nonredundant conditions, where $f(k)$ grows superpolynomially as $k\\rightarrow\\infty$. When $t<1$, we give an additional, simple theorem for $G$ to be $t$-tough, in terms of its vertex degrees.", "revisions": [ { "version": "v2", "updated": "2011-05-25T20:10:13.000Z" } ], "analyses": { "subjects": [ "05C40", "05C07" ], "keywords": [ "vertex degrees", "best monotone theorem", "study theorems giving sufficient conditions", "simple theorem", "nonredundant conditions" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2919B" } } }