{ "id": "0912.2508", "version": "v1", "published": "2009-12-13T15:10:50.000Z", "updated": "2009-12-13T15:10:50.000Z", "title": "On the series of the reciprocals lcm's of sequences of positive integers: A curious interpretation", "authors": [ "Bakir Farhi" ], "comment": "14 pages", "journal": "Integers: Electronic Journal of Combinatorial Number Theory, 9 (2009), p. 555-567 (#A42)", "categories": [ "math.NT" ], "abstract": "In this paper, we prove the following result: {quote} Let $\\A$ be an infinite set of positive integers. For all positive integer $n$, let $\\tau_n$ denote the smallest element of $\\A$ which does not divide $n$. Then we have $$\\lim_{N \\to + \\infty} \\frac{1}{N} \\sum_{n = 1}^{N} \\tau_n = \\sum_{n = 0}^{\\infty} \\frac{1}{\\lcm\\{a \\in \\A | a \\leq n\\}} .$${quote} In the two particular cases when $\\A$ is the set of all positive integers and when $\\A$ is the set of the prime numbers, we give a more precise result for the average asymptotic behavior of ${(\\tau_n)}_n$. Furthermore, we discuss the irrationality of the limit of $\\tau_n$ (in the average sense) by applying a result of Erd\\H{o}s.", "revisions": [ { "version": "v1", "updated": "2009-12-13T15:10:50.000Z" } ], "analyses": { "subjects": [ "11B83", "40A05" ], "keywords": [ "positive integer", "reciprocals lcms", "curious interpretation", "average asymptotic behavior", "infinite set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2508F" } } }