{ "id": "0912.2467", "version": "v3", "published": "2009-12-13T01:27:39.000Z", "updated": "2011-03-18T21:55:51.000Z", "title": "Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schr{รถ}dinger equation when $d \\geq 3$", "authors": [ "Benjamin Dodson" ], "comment": "53 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove that the defocusing, $d$-dimensional mass critical nonlinear Schr{\\\"o}dinger initial value problem is globally well-posed and scattering for $u_{0} \\in L^{2}(\\mathbf{R}^{d})$ and $d \\geq 3$. To do this, we will prove a frequency localized interaction Morawetz estimate similar to the estimate made in [10]. Since we are considering an $L^{2}$ - critical initial value problem we will localize to low frequencies.", "revisions": [ { "version": "v3", "updated": "2011-03-18T21:55:51.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "nonlinear schr", "global well-posedness", "dinger equation", "initial value problem", "frequency localized interaction morawetz estimate" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2467D" } } }