{ "id": "0912.2185", "version": "v1", "published": "2009-12-11T10:18:18.000Z", "updated": "2009-12-11T10:18:18.000Z", "title": "A Pick function related to the sequence of volumes of the unit ball in n-space", "authors": [ "Christian Berg", "Henrik L. Pedersen" ], "categories": [ "math.CA", "math.CV" ], "abstract": "We show that F_a(x)=\\frac{\\ln \\Gamma (x+1)}{x\\ln(ax)} is a Pick function for a\\ge 1 and find its integral representation. We also consider the function f(x)=(\\frac{\\pi^{x/2}}{\\Gamma(1+x/2)})^{1/(x\\ln x)} and show that \\ln f(x+1) is a Stieltjes function and that f(x+1) is completely monotonic on (0,\\infty). In particular f(n)=\\Omega_n^{1/(n\\ln n)},n\\ge 2 is a Hausdorff moment sequence. Here \\Omega_n is the volume of the unit ball in Euclidean n-space", "revisions": [ { "version": "v1", "updated": "2009-12-11T10:18:18.000Z" } ], "analyses": { "subjects": [ "33B15", "30E20", "30E15" ], "keywords": [ "unit ball", "pick function", "hausdorff moment sequence", "euclidean n-space", "stieltjes function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2185B" } } }