{ "id": "0912.2057", "version": "v1", "published": "2009-12-10T17:26:51.000Z", "updated": "2009-12-10T17:26:51.000Z", "title": "Free boundary regularity for a problem with right hand side", "authors": [ "Daniela De Silva" ], "categories": [ "math.AP" ], "abstract": "We consider a one-phase free boundary problem with variable coefficients and non-zero right hand side. We prove that flat free boundaries are $C^{1,\\alpha}$ using a different approach than the classical supconvolution method of Caffarelli. We use this result to obtain that Lipschitz free boundaries are $C^{1,\\alpha}$.", "revisions": [ { "version": "v1", "updated": "2009-12-10T17:26:51.000Z" } ], "analyses": { "subjects": [ "35B65" ], "keywords": [ "free boundary regularity", "non-zero right hand side", "one-phase free boundary problem", "flat free boundaries", "lipschitz free boundaries" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2057D" } } }