{ "id": "0912.2027", "version": "v2", "published": "2009-12-10T15:59:22.000Z", "updated": "2010-12-22T12:56:50.000Z", "title": "Convergence of numerical schemes for short wave long wave interaction equations", "authors": [ "Paulo Amorim", "Mário Figueira" ], "comment": "31 pages, 7 figures", "doi": "10.1142/S0219891611002573", "categories": [ "math.NA", "math.AP" ], "abstract": "We consider the numerical approximation of a system of partial differential equations involving a nonlinear Schr\\\"odinger equation coupled with a hyperbolic conservation law. This system arises in models for the interaction of short and long waves. Using the compensated compactness method, we prove convergence of approximate solutions generated by semi-discrete finite volume type methods towards the unique entropy solution of the Cauchy problem. Some numerical examples are presented.", "revisions": [ { "version": "v2", "updated": "2010-12-22T12:56:50.000Z" } ], "analyses": { "subjects": [ "65M12", "35M31" ], "keywords": [ "short wave long wave interaction", "wave long wave interaction equations", "numerical schemes", "convergence", "semi-discrete finite volume type methods" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.2027A" } } }