{ "id": "0912.1951", "version": "v2", "published": "2009-12-10T09:45:38.000Z", "updated": "2010-04-21T03:18:49.000Z", "title": "On some combinations of multiple zeta-star values", "authors": [ "Kohtaro Imatomi", "Tatsushi Tanaka", "Koji Tasaka", "Noriko Wakabayashi" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "We prove that the sum of multiple zeta-star values over all indices inserted two 2's into the string $(\\underbrace{3,1, ..., 3,1}_{2n})$ is evaluated to a rational multiple of powers of $\\pi^2$. We also establish certain conjectures on evaluations of multiple zeta-star values observed by numerical experiments.", "revisions": [ { "version": "v2", "updated": "2010-04-21T03:18:49.000Z" } ], "analyses": { "subjects": [ "11M32" ], "keywords": [ "multiple zeta-star values", "combinations", "rational multiple", "conjectures" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.1951I" } } }