{ "id": "0912.1935", "version": "v1", "published": "2009-12-10T08:21:07.000Z", "updated": "2009-12-10T08:21:07.000Z", "title": "Symmetries in an overdetermined problem for the Green's function", "authors": [ "Virginia Agostiniani", "Rolando Magnanini" ], "comment": "10 pages", "categories": [ "math.AP" ], "abstract": "We consider in the plane the problem of reconstructing a domain from the normal derivative of its Green's function with pole at a fixed point in the domain. By means of the theory of conformal mappings, we obtain existence, uniqueness, (non-spherical) symmetry results, and a formula relating the curvature of the boundary of the domain to the normal derivative of its Green's function.", "revisions": [ { "version": "v1", "updated": "2009-12-10T08:21:07.000Z" } ], "analyses": { "subjects": [ "35N25", "35J08", "35B06" ], "keywords": [ "greens function", "overdetermined problem", "conformal mappings", "normal derivative", "symmetry results" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.1935A" } } }