{ "id": "0912.1072", "version": "v2", "published": "2009-12-06T02:50:35.000Z", "updated": "2011-12-19T09:28:50.000Z", "title": "Computable de Finetti measures", "authors": [ "Cameron E. Freer", "Daniel M. Roy" ], "comment": "32 pages. Final journal version; expanded somewhat, with minor corrections. To appear in Annals of Pure and Applied Logic. Extended abstract appeared in Proceedings of CiE '09, LNCS 5635, pp. 218-231", "journal": "Annals of Pure and Applied Logic 163 (2012) pp. 530-546", "doi": "10.1016/j.apal.2011.06.011", "categories": [ "math.LO", "cs.LO", "cs.PL", "math.PR", "math.ST", "stat.ML", "stat.TH" ], "abstract": "We prove a computable version of de Finetti's theorem on exchangeable sequences of real random variables. As a consequence, exchangeable stochastic processes expressed in probabilistic functional programming languages can be automatically rewritten as procedures that do not modify non-local state. Along the way, we prove that a distribution on the unit interval is computable if and only if its moments are uniformly computable.", "revisions": [ { "version": "v2", "updated": "2011-12-19T09:28:50.000Z" } ], "analyses": { "subjects": [ "03D78", "60G09", "68Q10", "03F60", "68N18" ], "keywords": [ "finetti measures", "computable", "real random variables", "probabilistic functional programming languages", "finettis theorem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.1072F" } } }