{ "id": "0912.0873", "version": "v2", "published": "2009-12-04T14:53:33.000Z", "updated": "2011-02-23T08:59:27.000Z", "title": "Rank 3 permutation characters and maximal subgroups", "authors": [ "Hung P. Tong-Viet" ], "comment": "41 pages, to appear in Forum Mathematicum", "doi": "10.1515/FORM.2011.106", "categories": [ "math.GR", "math.RT" ], "abstract": "In this paper we classify all maximal subgroups M of a nearly simple primitive rank 3 group G of type L=Omega_{2m+1}(3), m > 3; acting on an L-orbit E of non-singular points of the natural module for L such that 1_P^G <=1_M^G where P is a stabilizer of a point in E. This result has an application to the study of minimal genera of algebraic curves which admit group actions.", "revisions": [ { "version": "v2", "updated": "2011-02-23T08:59:27.000Z" } ], "analyses": { "subjects": [ "20B15", "20E28", "20C20" ], "keywords": [ "maximal subgroups", "permutation characters", "admit group actions", "natural module", "simple primitive rank" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0912.0873T" } } }