{ "id": "0911.5686", "version": "v1", "published": "2009-11-30T16:40:24.000Z", "updated": "2009-11-30T16:40:24.000Z", "title": "Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit", "authors": [ "T. Claeys", "T. Grava" ], "comment": "25 pages, 4 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+\\epsilon^{2}u_{xxx}=0$ in a critical scaling regime where $x$ approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using the Riemann-Hilbert approach, we obtain an asymptotic expansion for the KdV solution in a double scaling limit, which shows that the oscillations degenerate to sharp pulses near the trailing edge. Locally those pulses resemble soliton solutions of the KdV equation.", "revisions": [ { "version": "v1", "updated": "2009-11-30T16:40:24.000Z" } ], "analyses": { "subjects": [ "35Q53", "35Q15" ], "keywords": [ "small dispersion limit", "korteweg-de vries equation", "solitonic asymptotics", "kdv solution", "pulses resemble soliton solutions" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.5686C" } } }