{ "id": "0911.5668", "version": "v2", "published": "2009-11-30T15:30:39.000Z", "updated": "2010-01-28T16:17:34.000Z", "title": "Simple Random Walk on Long Range Percolation Clusters II: Scaling Limits", "authors": [ "Nicholas Crawford", "Allan Sly" ], "comment": "47 pages. Minor Revision", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study limit laws for simple random walks on supercritical long range percolation clusters on $\\Z^d, d \\geq 1$. For the long range percolation model, the probability that two vertices $x, y$ are connected behaves asymptotically as $\\|x-y\\|_2^{-s}$. When $s\\in(d, d+1)$, we prove that the scaling limit of simple random walk on the infinite component converges to an $\\alpha$-stable L\\'evy process with $\\alpha = s-d$ establishing a conjecture of Berger and Biskup. The convergence holds in both the quenched and annealed senses. In the case where $d=1$ and $s>2$ we show that the simple random walk converges to a Brownian motion. The proof combines heat kernel bounds from our companion paper, ergodic theory estimates and an involved coupling constructed through the exploration of a large number of walks on the cluster.", "revisions": [ { "version": "v2", "updated": "2010-01-28T16:17:34.000Z" } ], "analyses": { "subjects": [ "60F17", "82B41", "82B43" ], "keywords": [ "scaling limit", "simple random walk converges", "supercritical long range percolation clusters", "long range percolation model", "study limit laws" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.5668C" } } }