{ "id": "0911.5505", "version": "v2", "published": "2009-11-29T17:52:17.000Z", "updated": "2010-03-09T12:12:58.000Z", "title": "Points de torsion sur les varietes abeliennes de type GSp", "authors": [ "Marc Hindry", "Nicolas Ratazzi" ], "comment": "31 pages, new section 5, accepted for publication in Journal de l'Institut de Mathematiques de Jussieu", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $A$ be an abelian variety defined over a number field $K$, the number of torsion points rational over a finite extension $L$ is bounded polynomially in terms of the degree $[L:K]$. When $A$ is isogenous to a product of simple abelian varieties of $\\GSp$ type, i.e. whose Mumford-Tate group is \"generic\" (isomorphic to the group of symplectic similitudes) and which satisfy the Mumford-Tate conjecture, we compute the optimal exponent for this bound in terms of the dimensions of the abelian subvarieties of $A$. The result is unconditional for a product of simple abelian varieties with endomorphism ring $\\Z$ and dimension outside an explicit exceptional set $\\mathcal{S}=\\{4,10,16,32,...\\}$. Furthermore, following a strategy of Serre, we also prove that if the Mumford-Tate conjecture is true for some abelian varieties of $\\GSp$ type, it is then true for a product of such abelian varieties.", "revisions": [ { "version": "v2", "updated": "2010-03-09T12:12:58.000Z" } ], "analyses": { "keywords": [ "abelian variety", "varietes abeliennes", "type gsp", "torsion sur", "simple abelian varieties" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.5505H" } } }