{ "id": "0911.5472", "version": "v3", "published": "2009-11-29T09:41:05.000Z", "updated": "2010-09-28T08:34:54.000Z", "title": "Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case", "authors": [ "Jing Yang", "Lingli Xia" ], "journal": "SCIENCE CHINA Mathematics, 2010, Sep., 53(9), 2525--2542", "doi": "10.1007/s11425-010-3155-z", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime number, $q=p^f$ for some positive integer $f$, $N$ be a positive integer such that $\\gcd(N,p)=1$, and let $\\k$ be a primitive multiplicative character of order $N$ over finite field $\\fq$. This paper studies the problem of explicit evaluation of Gauss sums in \"\\textsl{index 2 case}\" (i.e. $f=\\f{\\p(N)}{2}=[\\zn:\\pp]$, where $\\p(\\cd)$ is Euler function). Firstly, the classification of the Gauss sums in index 2 case is presented. Then, the explicit evaluation of Gauss sums $G(\\k^\\la) (1\\laN-1)$ in index 2 case with order $N$ being general even integer (i.e. $N=2^{r}\\cd N_0$ where $r,N_0$ are positive integers and $N_03$ is odd.) is obtained. Thus, the problem of explicit evaluation of Gauss sums in index 2 case is completely solved.", "revisions": [ { "version": "v3", "updated": "2010-09-28T08:34:54.000Z" } ], "analyses": { "subjects": [ "11L05", "11L20" ], "keywords": [ "gauss sums", "explicit evaluation", "complete solving", "positive integer", "prime number" ], "tags": [ "journal article" ], "publication": { "journal": "Science in China A: Mathematics", "year": 2010, "month": "Jun", "volume": 53, "number": 9, "pages": 2525 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010ScChA..53.2525Y" } } }