{ "id": "0911.4681", "version": "v2", "published": "2009-11-24T17:26:54.000Z", "updated": "2010-03-10T19:19:02.000Z", "title": "Weak order for the discretization of the stochastic heat equation driven by impulsive noise", "authors": [ "Felix Lindner", "René L. Schilling" ], "comment": "29 pages; Section 1 extended, new results in Appendix B", "categories": [ "math.PR", "math.NA" ], "abstract": "Considering a linear parabolic stochastic partial differential equation driven by impulsive space time noise, dX_t+AX_t dt= Q^{1/2}dZ_t, X_0=x_0\\in H, t\\in [0,T], we approximate the distribution of X_T. (Z_t)_{t\\in[0,T]} is an impulsive cylindrical process and Q describes the spatial covariance structure of the noise; Tr(A^{-\\alpha})<\\infty for some \\alpha>0 and A^\\beta Q is bounded for some \\beta\\in(\\alpha-1,\\alpha]. A discretization (X_h^n)_{n\\in\\{0,1,...,N\\}} is defined via the finite element method in space (parameter h>0) and a \\theta-method in time (parameter \\Delta t=T/N). For \\phi\\in C^2_b(H;R) we show an integral representation for the error |E\\phi(X^N_h)-E\\phi(X_T)| and prove that |E\\phi(X^N_h)-E\\phi(X_T)|=O(h^{2\\gamma}+(\\Delta t)^{\\gamma}) where \\gamma<1-\\alpha+\\beta.", "revisions": [ { "version": "v2", "updated": "2010-03-10T19:19:02.000Z" } ], "analyses": { "subjects": [ "60H15", "65M60", "60H35", "60G51", "60G52", "65C30" ], "keywords": [ "stochastic heat equation driven", "weak order", "impulsive noise", "linear parabolic stochastic partial differential", "stochastic partial differential equation driven" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.4681L" } } }