{ "id": "0911.4433", "version": "v8", "published": "2009-11-23T19:27:44.000Z", "updated": "2013-10-30T15:02:30.000Z", "title": "Arithmetic theory of harmonic numbers (II)", "authors": [ "Zhi-Wei Sun", "Li-Lu Zhao" ], "comment": "13 pages. Final published version", "journal": "Colloq. Math. 130(2013), 67-78", "categories": [ "math.NT", "math.CO" ], "abstract": "For $k=1,2,\\ldots$ let $H_k$ denote the harmonic number $\\sum_{j=1}^k 1/j$. In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime $p>3$ we have $$\\sum_{k=1}^{p-1}\\frac{H_k}{k2^k}\\equiv\\frac7{24}pB_{p-3}\\pmod{p^2},\\ \\ \\sum_{k=1}^{p-1}\\frac{H_{k,2}}{k2^k}\\equiv-\\frac 38B_{p-3}\\pmod{p},$$ and $$\\sum_{k=1}^{p-1}\\frac{H_{k,2n}^2}{k^{2n}}\\equiv\\frac{\\binom{6n+1}{2n-1}+n}{6n+1}pB_{p-1-6n}\\pmod{p^2}$$ for any positive integer $n<(p-1)/6$, where $B_0,B_1,B_2,\\ldots$ are Bernoulli numbers, and $H_{k,m}:=\\sum_{j=1}^k 1/j^m$.", "revisions": [ { "version": "v8", "updated": "2013-10-30T15:02:30.000Z" } ], "analyses": { "subjects": [ "11A07", "11B68", "05A19", "11B75" ], "keywords": [ "harmonic number", "arithmetic theory", "bernoulli numbers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0911.4433S" } } }